RUOLO DEI FERTILIZZANTI ORGANICI NELLA FILIERA CEREARICOLA

MARCO GRIGATTI, CLAUDIO MARZADORI

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DIPARTIMENTO DI SCIENZE E TECNOLOGIE AGROALIMENTARI (DISTAL)

Frumenti teneri e duri quali investimenti per garantire qualità e reddito? 21 – 09 – 23 Savoia Hotel Regency Bologna

Adeguare la pratica della fertilizzazione al mutare del contesto produttivo

- costo di produzione dei fertilizzanti legato al costo dell'energia
- riduzione delle risorse naturali necessarie per la produzione di concimi minerali vedi l'esempio delle fosforiti
- > effetti degli eventi climatici estremi sulla fertilità dei suoli
- > effetti dei sistemi agricoli intensivi sulla fertilità dei suoli agricoli
- problematiche di tipo ambientale legate alla dispersione di elementi nelle acque ed in atmosfera

Framework

- ✓ ESISTE UN RINNOVATO INTERESSE NEL RECUPERO DEI RIFIUTI ORGANICI DA IMPIEGARE IN AGRICOLTURA
- ✓ ATTENZIONE ALLA CHIUSURA DEL CICLO PER I MATERIALI ORGANICI:
- **✓ FOCUS:**
 - >POTENZIALE SOSTITUZIONE FERTILIZZANTI MINERALI
 - >CONSERVAZIONE/INCREMENTO DELLA SOSTANZA ORGANICA

Azienda Sperimentale - Fondazione per l'agricoltura F.lli Navarra (Ferrara

Parametro	U.M.	Valori riscontrati*
Reazione (in acqua)	(unità di pH)	8,25
Conducibilità elettrica (CE) a 25 °C	(dS m ⁻¹)	0,21
Granulometria		
Sabbia	(%)	25
Limo	(%)	54
Argilla	(%)	21
Carbonio organico (C)	(%)	0,98
Sostanza organica (SO)	(%)	1,69
Carbonati totali (CaCO ₃)	(%)	5,3
Calcare attivo (CaCO ₃)	(%)	2,2
Azoto (N) totale	(%)	0,09
Azoto (N) ammoniacale	(mg kg ⁻¹)	87,2
Azoto (N) nitrico	(mg kg ⁻¹)	5,4
Fosforo assimilabile Olsen (P)	(mg kg ⁻¹)	5,2
Capacità di scambio cationico (CSC)	(cmol _c kg ⁻¹)	22,2

Prove agronomiche Tesi a confronto

Ammendante compostato misto (ACM)

Ammendante compostato da fanghi agroalimentari (ACF_a)

Gesso di defecazione da fanghi - Biosolfato (GDD_std)

Gesso di defecazione da fanghi - Granfondo (GDD_new)

Fertilizzazione chimica aziendale N-P (Chim)

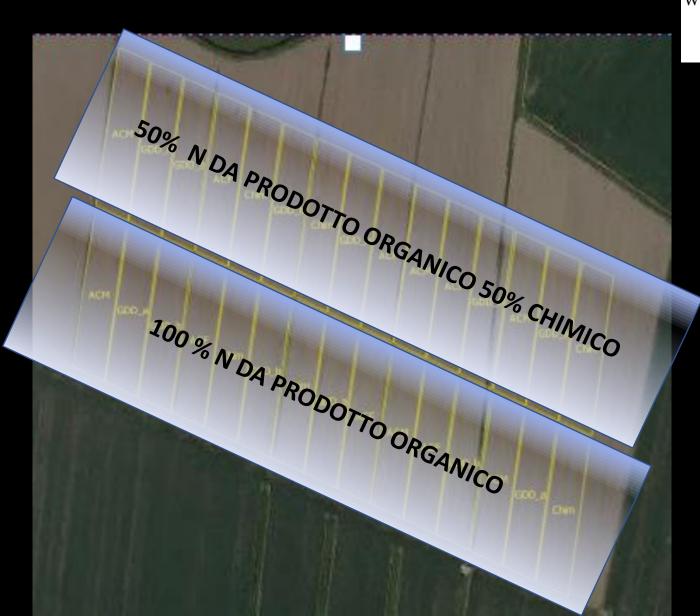
Principali caratteristiche dei prodotti

Drodotto	Umidità	C_{org}	N	P_2O_5	K ₂ O	SO ₃	CaO
Prodotto	(%)	(%)SS	(%)SS	(%)	(%)	(%)	(%)
ACM	29	23,0	2,3	1,6	1,8	-	=
ACF	40	31,6	2,6	2,0	1,4	-	-
GDDF_STD (Biosolfato)	74	15,0	0,8	2,2	0,3	17,8	21,4
GDDF_NEW (Granfondo)	50	18,1	1,5	1,1	0,7	15,2	20,3

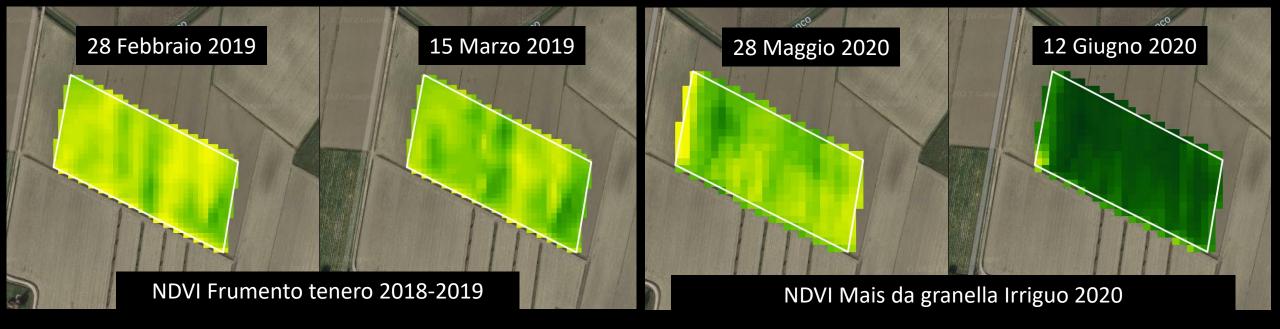
Principali caratteristiche dei prodotti

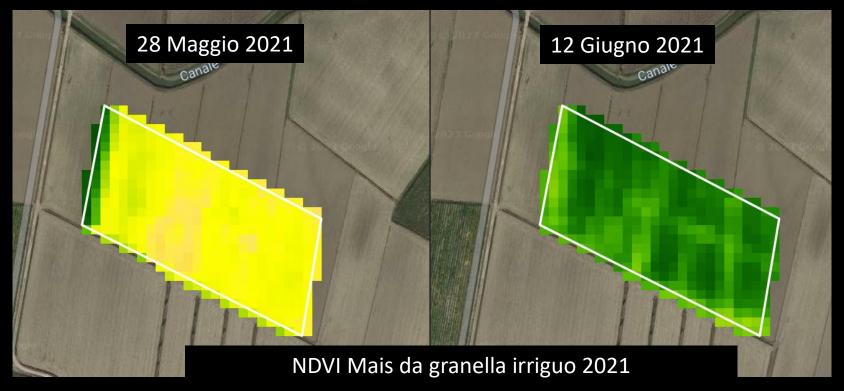
Prodotto	Pb	Cd	Ni	Zn	Cu	Hg	Cr VI			
1100000	(mg kg ⁻¹)									
ACM	20	0,28	20	178	140	0,12	<0,1			
ACF	14	0,32	23	167	75	0,16	<0,1			
GDDF_STD (Biosolfato)	23	<0.5	35	318	38	<0,5	<0,5			
GDDF_NEW (Granfondo)	12	<0.5	21	206	105	<0,5	<0,5			
Limiti (D.lgs 75/2010)	140	1,5	100	500	230	1,5	0,5			

Prove agronomiche Impostazione sperimentale

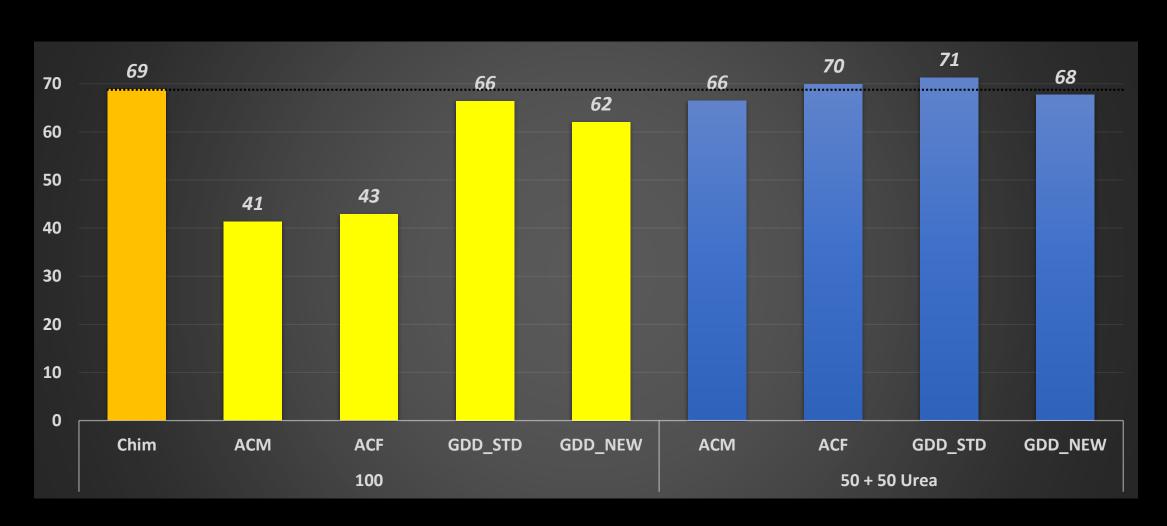

Anno	Coltura		
	Organico	Misto	Contara
1	Organico Organico + Fer	Organico + Fert.N	Frumento
•		Organico i rere-ri	tenero
2	2 Organico Organico + Fert-N		Mais da granella
4	Organico	Organico + Fert-iv	irriguo
2	3 Organico Organico + Fert-N	Organica Fort N	Mais da granella
3		Organico + rert-in	irriguo

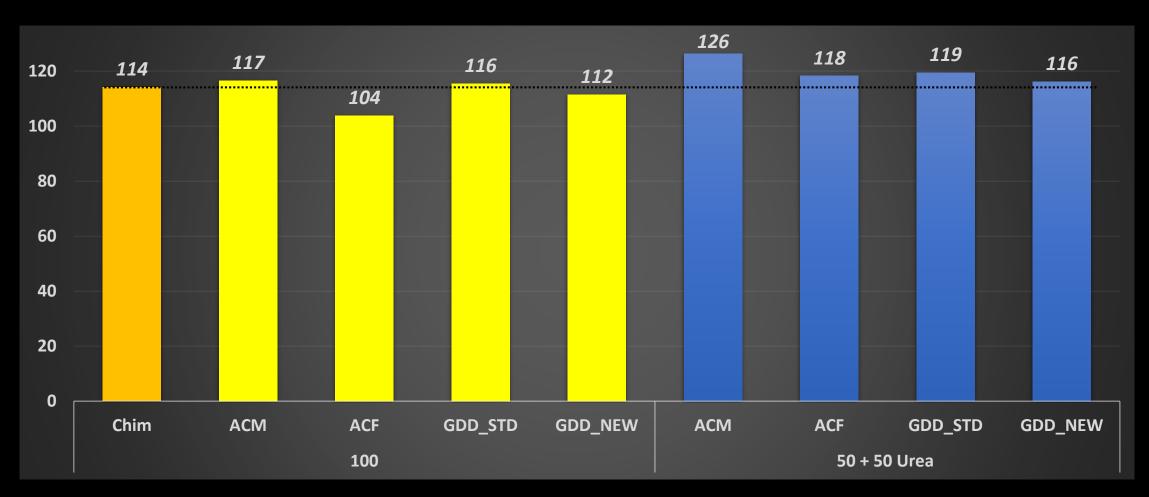
Prove agronomiche - Impostazione sperimentale



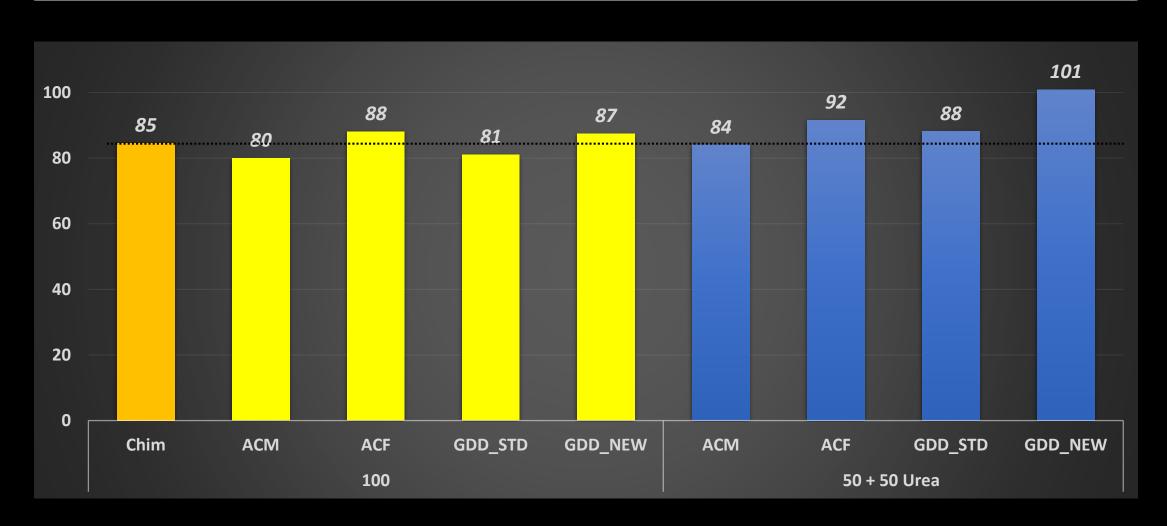

- Blocchi randomizzati;
- 3 repliche;
- **>** 30 Parcelle (75 × 16)
- $= 1200 \text{ m}^2$

 \triangleright Totale = 3,6 ha

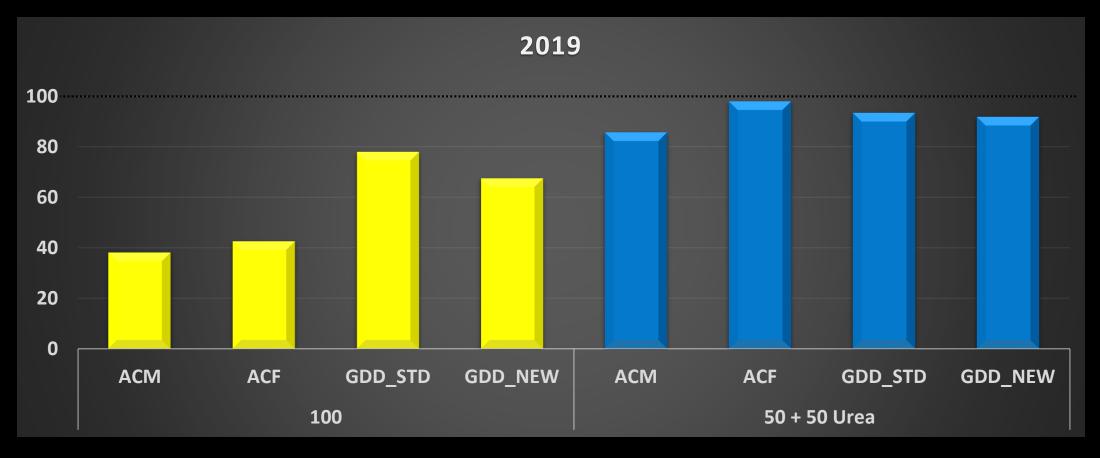




Produzione di granella in frumento tenero – 2018/2019 (q.li/ha)

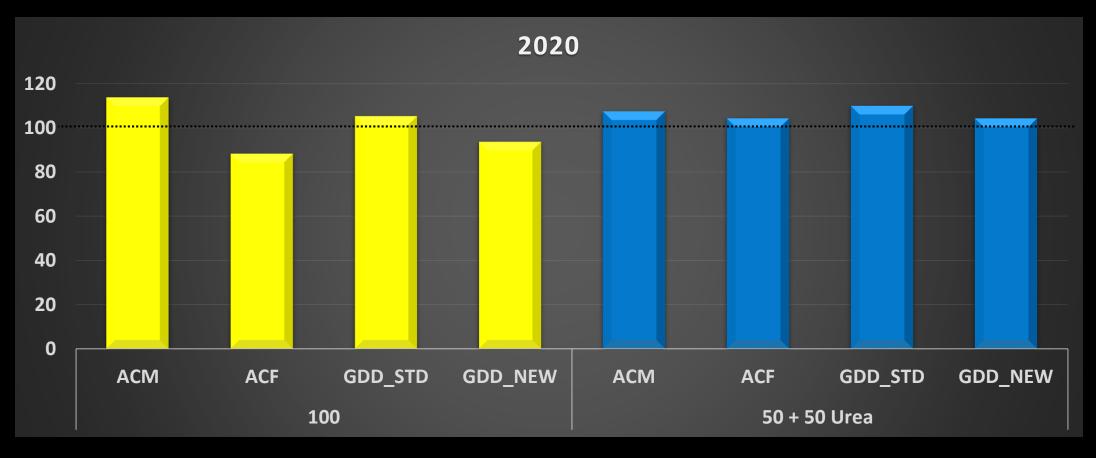


Produzione di granella in mais - 2020 (q.li/ha)


Grigatti M. Frumenti teneri e duri quali investimenti per garantire qualità e reddito?

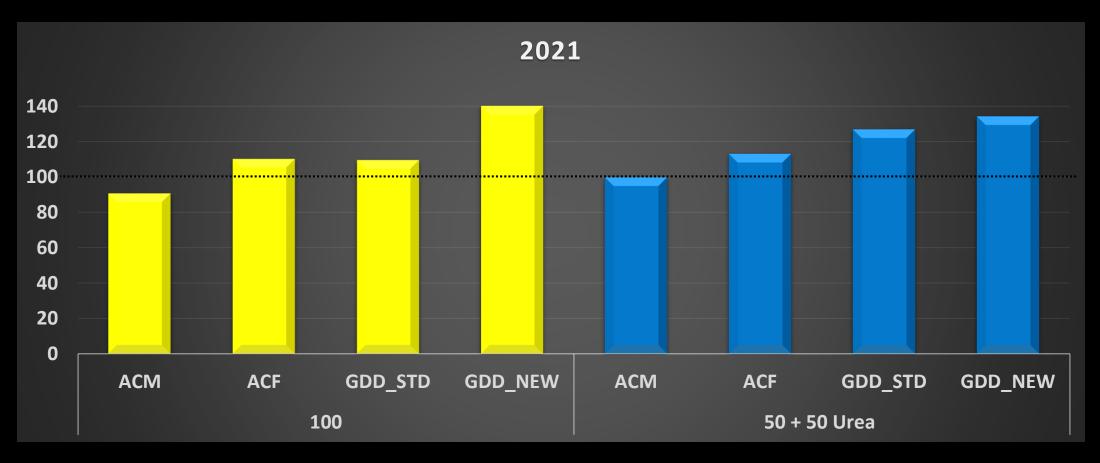
Produzione di granella in mais - 2021 (q.li/ha)

Efficienza agronomica relativa dell'AZOTO


(N utilizzato $_{org}$ /N distribuito $_{org}$)/(N utilizzato $_{chim}$ /N distribuito $_{chim}$)·100

Grigatti M. Frumenti teneri e duri quali investimenti per garantire qualità e reddito?

Efficienza agronomica relativa dell'AZOTO

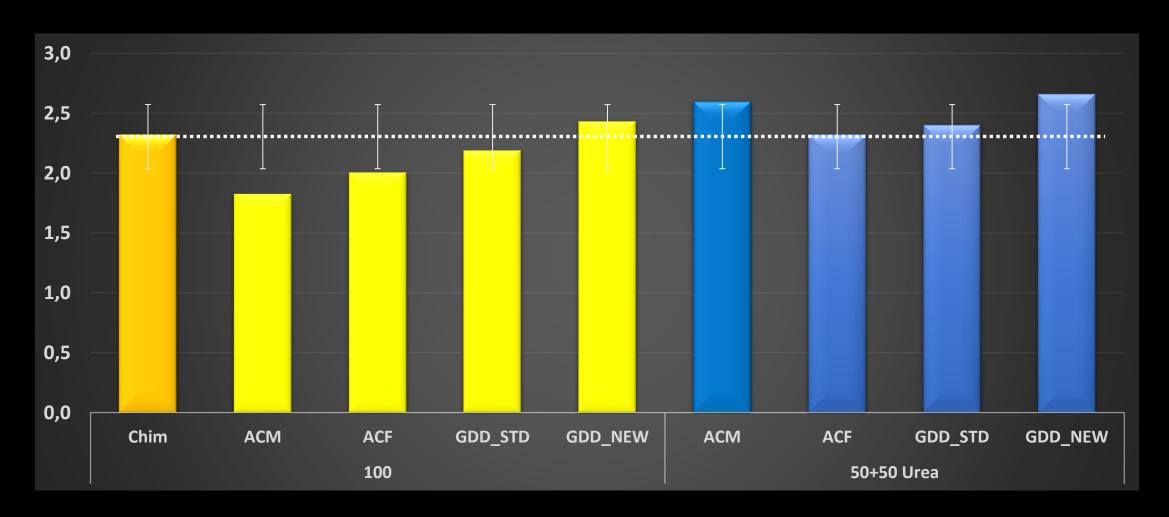

(N utilizzato $_{org}$ /N distribuito $_{org}$)/(N utilizzato $_{chim}$ /N distribuito $_{chim}$) \cdot 100

Grigatti M. Frumenti teneri e duri quali investimenti per garantire qualità e reddito?

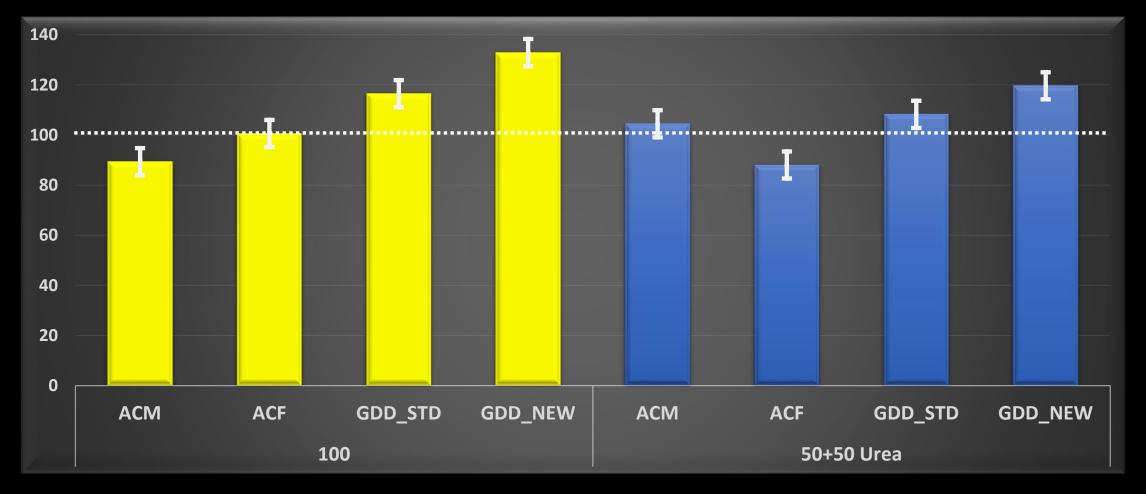
Efficienza agronomica relativa dell'AZOTO

(N utilizzato $_{org}$ /N distribuito $_{org}$)/(N utilizzato $_{chim}$ /N distribuito $_{chim}$) $\cdot 100$

Grigatti M. Frumenti teneri e duri quali investimenti per garantire qualità e reddito?


Asportazioni cumulate di Fosforo – granella (kg ha⁻¹)

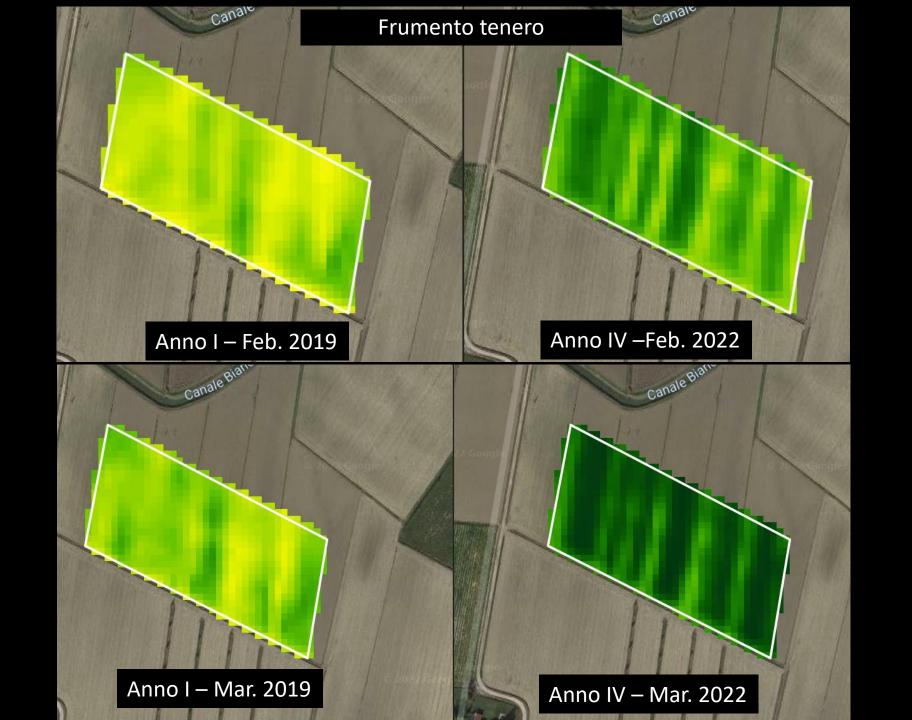
NON E' STATO DISTRIBUITO P MINERALE AI TRATTAMENTI (NE ORGANICO NE MISTO)


Prove agronomiche - Risultati SOSTANZA ORGANICA Grigatti M. Frumenti teneri e duri quali investimenti per garantire qualità e reddito?

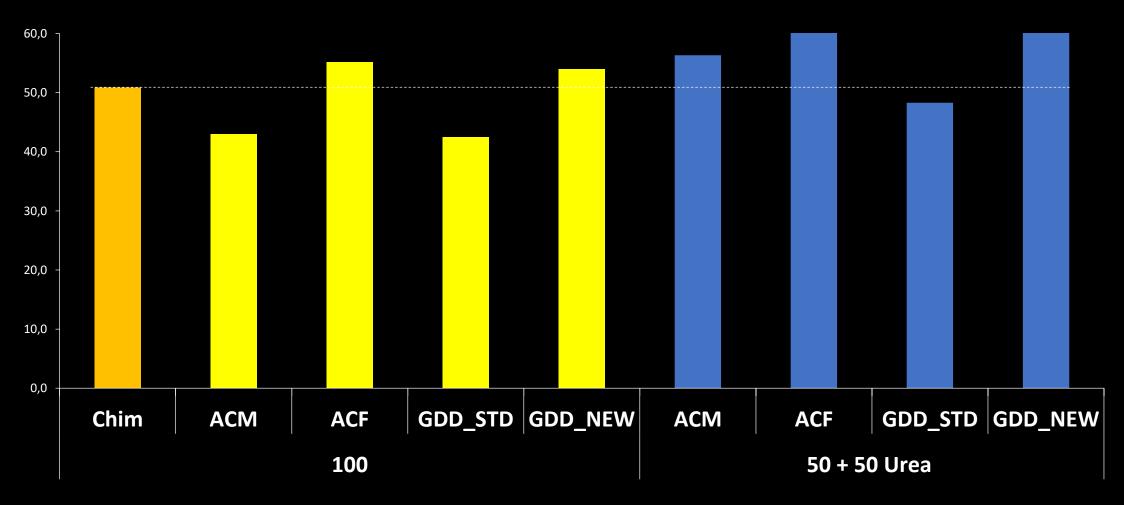
SO al termine del terzo anno – 2021 (%)

Grigatti M. Frumenti teneri e duri quali investimenti per garantire qualità e reddito?

Carbon Management Index (%) vs. Chim - 2021



Grigatti M. - Sostanza organica il baricentro sostenibile tra suolo, produzioni e tecnologie innovative per le aziende agricole. Centro Didattico Alessandro Navarra, Borgo Le Aie - Venerdì 1 aprile 2022


Conclusioni e prospettive

I prodotti testati si sono rivelati ottimi sostitutivi dei fertilizzanti minerali:

- >Azoto: primo anno qualche carenza in ACM e ACF.
 - >Anni successivi: ottime performance agronomiche.
 - Efficienza Azoto: più regolare nel percorso misto.
- >Utilizzo del Fosforo: più regolare nel percorso misto.
- **→** Gestione del Carbonio:
 - > Tendenza all'incremento nel percorso organico;
 - ➢ Più regolare nel percorso misto.

Produzione di granella in frumento tenero – 2021/2022 (q.li/ha)

Metalli nella granella – Frumento 2019

Livello/Tesi	Pb	Cd	Ni	Zn	Cu	Hg	Cr tot		
Livello/ Tesi	(mg kg ⁻¹)								
Chim	0,55	n.r.	0,65	19,9	4,11	n.r.	1,69		
100 % Organico									
ACM	0,57	n.r.	0,58	16,1	2,95	n.r.	1,16		
ACF	0,60	n.r.	0,64	15,5	3,00	n.r.	0,72		
GDD_STD	0,53	n.r.	0,53	19,2	3,64	n.r.	0,61		
GDD_NEW	0,53	n.r.	0,54	19,3	3,36	n.r.	0,65		
50% Organico + 50% Chimico									
ACM	0,53	n.r.	0,41	20,3	4,05	n.r.	0,84		
ACF	0,48	n.r.	0,53	20,8	4,33	n.r.	0,92		
GDD_STD	0,49	n.r.	0,61	21,0	4,01	n.r.	0,71		
GDD_NEW	0,56	n.r.	0,49	18,9	4,01	n.r.	0,72		

Metalli nella granella – Mais 2020

Livelle/Tesi	Pb	Cd	Ni	Zn	Cu	Hg	Cr tot		
Livello/Tesi	(mg kg-1)								
Chim	0,32	n.r.	0,04	13,6	1,80	n.r.	n.r.		
100 % Organico									
ACM	n.r.	n.r.	0,14	15,1	1,83	n.r.	n.r.		
ACF	0,21	n.r.	0,07	14,5	1,74	n.r.	n.r.		
GDD_STD	0,14	n.r.	0,16	15,0	1,98	n.r.	n.r.		
GDD_NEW	0,29	n.r.	0,17	21,1	2,07	n.r.	n.r.		
50% Organico + 50% Chimico									
ACM	n.r.	n.r.	0,08	14,4	1,88	n.r.	n.r.		
ACF	0,24	n.r.	0,11	12,9	1,78	n.r.	n.r.		
GDD_STD	0,48	n.r.	0,10	19,7	1,77	n.r.	n.r.		
GDD_NEW	Grigatti 0,23 teneri e	duri qual NoKo nenti per	garantire 0 \mathfrak{g} 11 eddito?	16,4	1,85	n.r.	n.r.		

Metalli nella granella – Mais 2021

Livello/Tesi	Pb	Cd	Ni	Zn	Cu	Hg	Cr tot
Liveno/ lesi	(mg kg-1)						
Chim	n.r.	n.r.	n.r.	15,9	1,13	n.r.	n.r.
100 % Organico							
ACM	n.r.	n.r.	n.r.	16,4	0,84	n.r.	n.r.
ACF	n.r.	n.r.	n.r.	15,5	1,11	n.r.	n.r.
GDD_NEW	n.r.	n.r.	n.r.	16,4	0,88	n.r.	n.r.
GDD_STD				17,0	1,18		
50% Organico + 50% Chimico							
ACM	n.r.	n.r.	n.r.	15,9	0,87	n.r.	n.r.
ACF	n.r.	n.r.	n.r.	15,3	1,00	n.r.	n.r.
GDD_NEW	n.r.	n.r.	n.r.	16,8	0,60	n.r.	n.r.
GDD_STD	n.r.	n.r.	n.r.	18,1	1,17	n.r.	n.r.